Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Chain-of-Thought Poisoning Attacks against R1-based Retrieval-Augmented Generation Systems (2505.16367v1)

Published 22 May 2025 in cs.IR

Abstract: Retrieval-augmented generation (RAG) systems can effectively mitigate the hallucination problem of LLMs,but they also possess inherent vulnerabilities. Identifying these weaknesses before the large-scale real-world deployment of RAG systems is of great importance, as it lays the foundation for building more secure and robust RAG systems in the future. Existing adversarial attack methods typically exploit knowledge base poisoning to probe the vulnerabilities of RAG systems, which can effectively deceive standard RAG models. However, with the rapid advancement of deep reasoning capabilities in modern LLMs, previous approaches that merely inject incorrect knowledge are inadequate when attacking RAG systems equipped with deep reasoning abilities. Inspired by the deep thinking capabilities of LLMs, this paper extracts reasoning process templates from R1-based RAG systems, uses these templates to wrap erroneous knowledge into adversarial documents, and injects them into the knowledge base to attack RAG systems. The key idea of our approach is that adversarial documents, by simulating the chain-of-thought patterns aligned with the model's training signals, may be misinterpreted by the model as authentic historical reasoning processes, thus increasing their likelihood of being referenced. Experiments conducted on the MS MARCO passage ranking dataset demonstrate the effectiveness of our proposed method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube