Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

FlowTSE: Target Speaker Extraction with Flow Matching (2505.14465v1)

Published 20 May 2025 in eess.AS, cs.LG, and cs.SD

Abstract: Target speaker extraction (TSE) aims to isolate a specific speaker's speech from a mixture using speaker enroLLMent as a reference. While most existing approaches are discriminative, recent generative methods for TSE achieve strong results. However, generative methods for TSE remain underexplored, with most existing approaches relying on complex pipelines and pretrained components, leading to computational overhead. In this work, we present FlowTSE, a simple yet effective TSE approach based on conditional flow matching. Our model receives an enroLLMent audio sample and a mixed speech signal, both represented as mel-spectrograms, with the objective of extracting the target speaker's clean speech. Furthermore, for tasks where phase reconstruction is crucial, we propose a novel vocoder conditioned on the complex STFT of the mixed signal, enabling improved phase estimation. Experimental results on standard TSE benchmarks show that FlowTSE matches or outperforms strong baselines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

HackerNews