Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Convergence Guarantees for Gradient-Based Training of Neural PDE Solvers: From Linear to Nonlinear PDEs (2505.14002v2)

Published 20 May 2025 in math.NA and cs.NA

Abstract: We present a unified convergence theory for gradient-based training of neural network methods for partial differential equations (PDEs), covering both physics-informed neural networks (PINNs) and the Deep Ritz method. For linear PDEs, we extend the neural tangent kernel (NTK) framework for PINNs to establish global convergence guarantees for a broad class of linear operators. For nonlinear PDEs, we prove convergence to critical points via the \L{}ojasiewicz inequality under the random feature model, eliminating the need for strong over-parameterization and encompassing both gradient flow and implicit gradient descent dynamics. Our results further reveal that the random feature model exhibits an implicit regularization effect, preventing parameter divergence to infinity. Theoretical findings are corroborated by numerical experiments, providing new insights into the training dynamics and robustness of neural network PDE solvers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)