Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Asymptotic Equation Linking WAIC and WBIC in Singular Models (2505.13902v2)

Published 20 May 2025 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: In statistical learning, models are classified as regular or singular depending on whether the mapping from parameters to probability distributions is injective. Most models with hierarchical structures or latent variables are singular, for which conventional criteria such as the Akaike Information Criterion and the Bayesian Information Criterion are inapplicable due to the breakdown of normal approximations for the likelihood and posterior. To address this, the Widely Applicable Information Criterion (WAIC) and the Widely Applicable Bayesian Information Criterion (WBIC) have been proposed. Since WAIC and WBIC are computed using posterior distributions at different temperature settings, separate posterior sampling is generally required. In this paper, we theoretically derive an asymptotic equation that links WAIC and WBIC, despite their dependence on different posteriors. This equation yields an asymptotically unbiased expression of WAIC in terms of the posterior distribution used for WBIC. The result clarifies the structural relationship between these criteria within the framework of singular learning theory, and deepens understanding of their asymptotic behavior. This theoretical contribution provides a foundation for future developments in the computational efficiency of model selection in singular models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 19 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube