Implicit differentiation with second-order derivatives and benchmarks in finite-element-based differentiable physics (2505.12646v1)
Abstract: Differentiable programming is revolutionizing computational science by enabling automatic differentiation (AD) of numerical simulations. While first-order gradients are well-established, second-order derivatives (Hessians) for implicit functions in finite-element-based differentiable physics remain underexplored. This work bridges this gap by deriving and implementing a framework for implicit Hessian computation in PDE-constrained optimization problems. We leverage primitive AD tools (Jacobian-vector product/vector-Jacobian product) to build an algorithm for Hessian-vector products and validate the accuracy against finite difference approximations. Four benchmarks spanning linear/nonlinear, 2D/3D, and single/coupled-variable problems demonstrate the utility of second-order information. Results show that the Newton-CG method with exact Hessians accelerates convergence for nonlinear inverse problems (e.g., traction force identification, shape optimization), while the L-BFGS-B method suffices for linear cases. Our work provides a robust foundation for integrating second-order implicit differentiation into differentiable physics engines, enabling faster and more reliable optimization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.