Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Beyond Single-Point Judgment: Distribution Alignment for LLM-as-a-Judge (2505.12301v1)

Published 18 May 2025 in cs.AI and cs.CL

Abstract: LLMs have emerged as powerful evaluators in the LLM-as-a-Judge paradigm, offering significant efficiency and flexibility compared to human judgments. However, previous methods primarily rely on single-point evaluations, overlooking the inherent diversity and uncertainty in human evaluations. This approach leads to information loss and decreases the reliability of evaluations. To address this limitation, we propose a novel training framework that explicitly aligns the LLM-generated judgment distribution with empirical human distributions. Specifically, we propose a distributional alignment objective based on KL divergence, combined with an auxiliary cross-entropy regularization to stabilize the training process. Furthermore, considering that empirical distributions may derive from limited human annotations, we incorporate adversarial training to enhance model robustness against distribution perturbations. Extensive experiments across various LLM backbones and evaluation tasks demonstrate that our framework significantly outperforms existing closed-source LLMs and conventional single-point alignment methods, with improved alignment quality, evaluation accuracy, and robustness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.