Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning on a Razor's Edge: the Singularity Bias of Polynomial Neural Networks (2505.11846v1)

Published 17 May 2025 in cs.LG and math.AG

Abstract: Deep neural networks often infer sparse representations, converging to a subnetwork during the learning process. In this work, we theoretically analyze subnetworks and their bias through the lens of algebraic geometry. We consider fully-connected networks with polynomial activation functions, and focus on the geometry of the function space they parametrize, often referred to as neuromanifold. First, we compute the dimension of the subspace of the neuromanifold parametrized by subnetworks. Second, we show that this subspace is singular. Third, we argue that such singularities often correspond to critical points of the training dynamics. Lastly, we discuss convolutional networks, for which subnetworks and singularities are similarly related, but the bias does not arise.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube