Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exact multiple anomalous mobility edges in a flat band geometry (2505.10766v2)

Published 16 May 2025 in cond-mat.dis-nn and quant-ph

Abstract: Anomalous mobility edges(AMEs), separating localized from multifractal critical states, represent a novel form of localization transition in quasiperiodic systems. However, quasi-periodic models exhibiting exact AMEs remain relatively rare, limiting the understanding of these transitions. In this work, we leverage the geometric structure of flat band models to construct exact AMEs. Specifically, we introduce an anti-symmetric diagonal quasi-periodic mosaic modulation, which consists of both quasi-periodic and constant potentials, into a cross-stitch flat band lattice. When the constant potential is zero, the system resides entirely in a localized phase, with its dispersion relation precisely determined. For non-zero constant potentials, we use a simple method to derive analytical solutions for a class of AMEs, providing exact results for both the AMEs and the system's localization and critical properties. Additionally, we propose a classical electrical circuit design to experimentally realize the system. This study offers valuable insights into the existence and characteristics of AMEs in quasi-periodic systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com