On the critical length conjecture for spherical Bessel functions in CAGD (2505.09964v1)
Abstract: A conjecture of J.M. Carnicer, E. Mainar and J.M. Pe~{n}a states that the critical length of the space $P_{n}\odot C_{1}$ generated by the functions $x{k}\sin x$ and $x{k}\cos x$ for $k=0,...n$ is equal to the first positive zero $j_{n+\frac{1}{2},1}$ of the Bessel function $J_{n+\frac{1}{2}}$ of the first kind. It is known that the conjecture implies the following statement (D3): the determinant of the Hankel matrix \begin{equation} \left( \begin{array} [c]{ccc} f & f{\prime} & f{\prime\prime}\ f{\prime} & f{\prime\prime} & f{\left( 3\right) }\ f{\prime\prime} & f{\prime\prime\prime} & f{\left( 4\right) } \end{array} \right) \label{eqabstract} \end{equation} does not have a zero in the interval $(0,j_{n+\frac{1}{2},1})$ whenever $f=f_{n}$ is given by $f_{n}\left( x\right) =\sqrt{\frac{\pi}{2}} x{n+\frac{1}{2}}J_{n+\frac{1}{2}}\left( x\right) .$ In this paper we shall prove (D3) and various generalizations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.