Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Advanced Self-Attention for Linear Transformers in the Singular Value Domain (2505.08516v1)

Published 13 May 2025 in cs.LG and cs.AI

Abstract: Transformers have demonstrated remarkable performance across diverse domains. The key component of Transformers is self-attention, which learns the relationship between any two tokens in the input sequence. Recent studies have revealed that the self-attention can be understood as a normalized adjacency matrix of a graph. Notably, from the perspective of graph signal processing (GSP), the self-attention can be equivalently defined as a simple graph filter, applying GSP using the value vector as the signal. However, the self-attention is a graph filter defined with only the first order of the polynomial matrix, and acts as a low-pass filter preventing the effective leverage of various frequency information. Consequently, existing self-attention mechanisms are designed in a rather simplified manner. Therefore, we propose a novel method, called \underline{\textbf{A}}ttentive \underline{\textbf{G}}raph \underline{\textbf{F}}ilter (AGF), interpreting the self-attention as learning the graph filter in the singular value domain from the perspective of graph signal processing for directed graphs with the linear complexity w.r.t. the input length $n$, i.e., $\mathcal{O}(nd2)$. In our experiments, we demonstrate that AGF achieves state-of-the-art performance on various tasks, including Long Range Arena benchmark and time series classification.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.