Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Feature Fitted Online Conformal Prediction for Deep Time Series Forecasting Model (2505.08158v1)

Published 13 May 2025 in cs.LG and cs.AI

Abstract: Time series forecasting is critical for many applications, where deep learning-based point prediction models have demonstrated strong performance. However, in practical scenarios, there is also a need to quantify predictive uncertainty through online confidence intervals. Existing confidence interval modeling approaches building upon these deep point prediction models suffer from key limitations: they either require costly retraining, fail to fully leverage the representational strengths of deep models, or lack theoretical guarantees. To address these gaps, we propose a lightweight conformal prediction method that provides valid coverage and shorter interval lengths without retraining. Our approach leverages features extracted from pre-trained point prediction models to fit a residual predictor and construct confidence intervals, further enhanced by an adaptive coverage control mechanism. Theoretically, we prove that our method achieves asymptotic coverage convergence, with error bounds dependent on the feature quality of the underlying point prediction model. Experiments on 12 datasets demonstrate that our method delivers tighter confidence intervals while maintaining desired coverage rates. Code, model and dataset in \href{https://github.com/xiannanhuang/FFDCI}{Github}

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub