Generalized Degenerate Clifford and Lipschitz Groups in Geometric Algebras (2505.07106v2)
Abstract: This paper introduces and studies generalized degenerate Clifford and Lipschitz groups in geometric (Clifford) algebras. These Lie groups preserve the direct sums of the subspaces determined by the grade involution and reversion under the adjoint and twisted adjoint representations in degenerate geometric algebras. We prove that the generalized degenerate Clifford and Lipschitz groups can be defined using centralizers and twisted centralizers of fixed grades subspaces and the norm functions that are widely used in the theory of spin groups. We study the relations between these groups and consider them in the particular cases of plane-based geometric algebras and Grassmann algebras. The corresponding Lie algebras are studied. The presented groups are interesting for the study of generalized degenerate spin groups and applications in computer science, physics, and engineering.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.