Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 68 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Dynamics of Inducible Genetic Circuits (2505.07053v1)

Published 11 May 2025 in q-bio.MN, physics.bio-ph, and q-bio.SC

Abstract: Genes are connected in complex networks of interactions where often the product of one gene is a transcription factor that alters the expression of another. Many of these networks are based on a few fundamental motifs leading to switches and oscillators of various kinds. And yet, there is more to the story than which transcription factors control these various circuits. These transcription factors are often themselves under the control of effector molecules that bind them and alter their level of activity. Traditionally, much beautiful work has shown how to think about the stability of the different states achieved by these fundamental regulatory architectures by examining how parameters such as transcription rates, degradation rates and dissociation constants tune the circuit, giving rise to behavior such as bistability. However, such studies explore dynamics without asking how these quantities are altered in real time in living cells as opposed to at the fingertips of the synthetic biologist's pipette or on the computational biologist's computer screen. In this paper, we make a departure from the conventional dynamical systems view of these regulatory motifs by using statistical mechanical models to focus on endogenous signaling knobs such as effector concentrations rather than on the convenient but more experimentally remote knobs such as dissociation constants, transcription rates and degradation rates that are often considered. We also contrast the traditional use of Hill functions to describe transcription factor binding with more detailed thermodynamic models. This approach provides insights into how biological parameters are tuned to control the stability of regulatory motifs in living cells, sometimes revealing quite a different picture than is found by using Hill functions and tuning circuit parameters by hand.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube