Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automated Learning of Semantic Embedding Representations for Diffusion Models (2505.05732v1)

Published 9 May 2025 in cs.LG and cs.CV

Abstract: Generative models capture the true distribution of data, yielding semantically rich representations. Denoising diffusion models (DDMs) exhibit superior generative capabilities, though efficient representation learning for them are lacking. In this work, we employ a multi-level denoising autoencoder framework to expand the representation capacity of DDMs, which introduces sequentially consistent Diffusion Transformers and an additional timestep-dependent encoder to acquire embedding representations on the denoising Markov chain through self-conditional diffusion learning. Intuitively, the encoder, conditioned on the entire diffusion process, compresses high-dimensional data into directional vectors in latent under different noise levels, facilitating the learning of image embeddings across all timesteps. To verify the semantic adequacy of embeddings generated through this approach, extensive experiments are conducted on various datasets, demonstrating that optimally learned embeddings by DDMs surpass state-of-the-art self-supervised representation learning methods in most cases, achieving remarkable discriminative semantic representation quality. Our work justifies that DDMs are not only suitable for generative tasks, but also potentially advantageous for general-purpose deep learning applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)