Robust Model-Based In-Hand Manipulation with Integrated Real-Time Motion-Contact Planning and Tracking (2505.04978v1)
Abstract: Robotic dexterous in-hand manipulation, where multiple fingers dynamically make and break contact, represents a step toward human-like dexterity in real-world robotic applications. Unlike learning-based approaches that rely on large-scale training or extensive data collection for each specific task, model-based methods offer an efficient alternative. Their online computing nature allows for ready application to new tasks without extensive retraining. However, due to the complexity of physical contacts, existing model-based methods encounter challenges in efficient online planning and handling modeling errors, which limit their practical applications. To advance the effectiveness and robustness of model-based contact-rich in-hand manipulation, this paper proposes a novel integrated framework that mitigates these limitations. The integration involves two key aspects: 1) integrated real-time planning and tracking achieved by a hierarchical structure; and 2) joint optimization of motions and contacts achieved by integrated motion-contact modeling. Specifically, at the high level, finger motion and contact force references are jointly generated using contact-implicit model predictive control. The high-level module facilitates real-time planning and disturbance recovery. At the low level, these integrated references are concurrently tracked using a hand force-motion model and actual tactile feedback. The low-level module compensates for modeling errors and enhances the robustness of manipulation. Extensive experiments demonstrate that our approach outperforms existing model-based methods in terms of accuracy, robustness, and real-time performance. Our method successfully completes five challenging tasks in real-world environments, even under appreciable external disturbances.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.