Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

MUSAR: Exploring Multi-Subject Customization from Single-Subject Dataset via Attention Routing (2505.02823v1)

Published 5 May 2025 in cs.CV

Abstract: Current multi-subject customization approaches encounter two critical challenges: the difficulty in acquiring diverse multi-subject training data, and attribute entanglement across different subjects. To bridge these gaps, we propose MUSAR - a simple yet effective framework to achieve robust multi-subject customization while requiring only single-subject training data. Firstly, to break the data limitation, we introduce debiased diptych learning. It constructs diptych training pairs from single-subject images to facilitate multi-subject learning, while actively correcting the distribution bias introduced by diptych construction via static attention routing and dual-branch LoRA. Secondly, to eliminate cross-subject entanglement, we introduce dynamic attention routing mechanism, which adaptively establishes bijective mappings between generated images and conditional subjects. This design not only achieves decoupling of multi-subject representations but also maintains scalable generalization performance with increasing reference subjects. Comprehensive experiments demonstrate that our MUSAR outperforms existing methods - even those trained on multi-subject dataset - in image quality, subject consistency, and interaction naturalness, despite requiring only single-subject dataset.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.