Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 19 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 87 tok/s
GPT OSS 120B 464 tok/s Pro
Kimi K2 171 tok/s Pro
2000 character limit reached

Fine-Tuning Without Forgetting: Adaptation of YOLOv8 Preserves COCO Performance (2505.01016v1)

Published 2 May 2025 in cs.CV and cs.AI

Abstract: The success of large pre-trained object detectors hinges on their adaptability to diverse downstream tasks. While fine-tuning is the standard adaptation method, specializing these models for challenging fine-grained domains necessitates careful consideration of feature granularity. The critical question remains: how deeply should the pre-trained backbone be fine-tuned to optimize for the specialized task without incurring catastrophic forgetting of the original general capabilities? Addressing this, we present a systematic empirical study evaluating the impact of fine-tuning depth. We adapt a standard YOLOv8n model to a custom, fine-grained fruit detection dataset by progressively unfreezing backbone layers (freeze points at layers 22, 15, and 10) and training. Performance was rigorously evaluated on both the target fruit dataset and, using a dual-head evaluation architecture, on the original COCO validation set. Our results demonstrate unequivocally that deeper fine-tuning (unfreezing down to layer 10) yields substantial performance gains (e.g., +10\% absolute mAP50) on the fine-grained fruit task compared to only training the head. Strikingly, this significant adaptation and specialization resulted in negligible performance degradation (<0.1\% absolute mAP difference) on the COCO benchmark across all tested freeze levels. We conclude that adapting mid-to-late backbone features is highly effective for fine-grained specialization. Critically, our results demonstrate this adaptation can be achieved without the commonly expected penalty of catastrophic forgetting, presenting a compelling case for exploring deeper fine-tuning strategies, particularly when targeting complex domains or when maximizing specialized performance is paramount.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.