Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Graph Synthetic Out-of-Distribution Exposure with Large Language Models (2504.21198v2)

Published 29 Apr 2025 in cs.LG

Abstract: Out-of-distribution (OOD) detection in graphs is critical for ensuring model robustness in open-world and safety-sensitive applications. Existing graph OOD detection approaches typically train an in-distribution (ID) classifier on ID data alone, then apply post-hoc scoring to detect OOD instances. While OOD exposure - adding auxiliary OOD samples during training - can improve detection, current graph-based methods often assume access to real OOD nodes, which is often impractical or costly. In this paper, we present GOE-LLM, a framework that leverages LLMs to achieve OOD exposure on text-attributed graphs without using any real OOD nodes. GOE-LLM introduces two pipelines: (1) identifying pseudo-OOD nodes from the initially unlabeled graph using zero-shot LLM annotations, and (2) generating semantically informative synthetic OOD nodes via LLM-prompted text generation. These pseudo-OOD nodes are then used to regularize ID classifier training and enhance OOD detection awareness. Empirical results on multiple benchmarks show that GOE-LLM substantially outperforms state-of-the-art methods without OOD exposure, achieving up to a 23.5% improvement in AUROC for OOD detection, and attains performance on par with those relying on real OOD labels for exposure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube