Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Large Language Model Empowered Privacy-Protected Framework for PHI Annotation in Clinical Notes (2504.18569v1)

Published 22 Apr 2025 in cs.CR, cs.AI, and cs.LG

Abstract: The de-identification of private information in medical data is a crucial process to mitigate the risk of confidentiality breaches, particularly when patient personal details are not adequately removed before the release of medical records. Although rule-based and learning-based methods have been proposed, they often struggle with limited generalizability and require substantial amounts of annotated data for effective performance. Recent advancements in LLMs have shown significant promise in addressing these issues due to their superior language comprehension capabilities. However, LLMs present challenges, including potential privacy risks when using commercial LLM APIs and high computational costs for deploying open-source LLMs locally. In this work, we introduce LPPA, an LLM-empowered Privacy-Protected PHI Annotation framework for clinical notes, targeting the English language. By fine-tuning LLMs locally with synthetic notes, LPPA ensures strong privacy protection and high PHI annotation accuracy. Extensive experiments demonstrate LPPA's effectiveness in accurately de-identifying private information, offering a scalable and efficient solution for enhancing patient privacy protection.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.