Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Linear convergence of a one-cut conditional gradient method for total variation regularization (2504.16899v1)

Published 23 Apr 2025 in math.OC, cs.NA, and math.NA

Abstract: We introduce a fully-corrective generalized conditional gradient method for convex minimization problems involving total variation regularization on multidimensional domains. It relies on alternating between updating an active set of subsets of the spatial domain as well as of an iterate given by a conic combination of the associated characteristic functions. Different to previous approaches in the same spirit, the computation of a new candidate set only requires the solution of one prescribed mean curvature problem instead of the resolution of a fractional minimization task analogous to finding a generalized Cheeger set. After discretization, the former can be realized by a single run of a graph cut algorithm leading to significant speedup in practice. We prove the global sublinear convergence of the resulting method, under mild assumptions, and its asymptotic linear convergence in a more restrictive two-dimensional setting which uses results of stability of surfaces of prescribed curvature under perturbations of the curvature. Finally, we numerically demonstrate this convergence behavior in some model PDE-constrained minimization problems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.