Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

6G WavesFM: A Foundation Model for Sensing, Communication, and Localization (2504.14100v1)

Published 18 Apr 2025 in eess.SP, cs.AI, and cs.LG

Abstract: This paper introduces WavesFM, a novel Wireless Foundation Model (WFM) framework, capable of supporting a wide array of communication, sensing, and localization tasks. Our proposed architecture combines a shared Vision Transformer (ViT) backbone with task-specific multi-layer perceptron (MLP) heads and incorporates Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. This design promotes full parameter sharing across tasks, significantly reducing the computational and memory footprint without sacrificing performance. The model processes both image-like wireless modalities, such as spectrograms and channel state information (CSI), and in-phase and quadrature (IQ) signals arranged as orthogonal frequency-division multiplexing (OFDM) resource grids. We demonstrate the strong generalization capabilities of WavesFM through extensive experiments on four downstream tasks: Fifth Generation New Radio (5G NR) positioning; multiple-input multiple-output OFDM (MIMO-OFDM) channel estimation; human activity sensing; and radio-frequency (RF) signal classification. Compared to supervised baselines trained individually, our approach achieves superior performance while sharing 80% of its parameters across tasks. Furthermore, we show that pretraining on domain-relevant data not only boosts performance but also accelerates convergence, reducing training time by up to 5x. These results demonstrate that our unified WFM can support diverse tasks and deliver significant gains in both performance and efficiency, highlighting the transformative potential of foundation models to drive AI-native paradigms in future sixth-generation (6G) networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube