Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Advancements and Challenges in Quantum Machine Learning for Medical Image Classification: A Comprehensive Review (2504.13910v1)

Published 23 Mar 2025 in quant-ph

Abstract: Quantum technologies are rapidly advancing as image classification tasks grow more complex due to large image volumes and extensive parameter updates required by traditional machine learning models. Quantum Machine Learning (QML) offers a promising solution for medical image classification. The parallelization of quantum computing can significantly improve speed and accuracy in disease detection and diagnosis. This paper provides an overview of recent studies on medical image classification through a structured taxonomy, highlighting key contributions, limitations and gaps in current research. It emphasizes moving from simulations to real quantum computers, addressing challenges like noisy qubits and suggests future research to enhance medical image classification using quantum technology.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.