The coexistence of null and spacelike singularities inside spherically symmetric black holes (2504.12370v1)
Abstract: In our previous work [Van de Moortel, The breakdown of weak null singularities, Duke Mathematical Journal 172 (15), 2957-3012, 2023], we showed that dynamical black holes formed in charged spherical collapse generically feature both a null weakly singular Cauchy horizon and a stronger (presumably spacelike) singularity, confirming a longstanding conjecture in the physics literature. However, this previous result, based on a contradiction argument, did not provide quantitative estimates on the stronger singularity. In this study, we adopt a new approach by analyzing local initial data inside the black hole that are consistent with a breakdown of the Cauchy horizon. We prove that the remaining portion is spacelike and obtain sharp spacetime estimates near the null-spacelike transition. Notably, we show that the Kasner exponents of the spacelike portion are positive, in contrast to the well-known Oppenheimer-Snyder model of gravitational collapse. Moreover, these exponents degenerate to (1,0,0) towards the null-spacelike transition. Our result provides the first quantitative instances of a null-spacelike singularity transition inside a black hole. In our companion paper, we moreover apply our analysis to carry out the construction of a large class of asymptotically flat one or two-ended black holes featuring coexisting null and spacelike singularities.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.