Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A New Paradigm of User-Centric Wireless Communication Driven by Large Language Models (2504.11696v1)

Published 16 Apr 2025 in cs.NI, cs.IR, cs.SY, and eess.SY

Abstract: The next generation of wireless communications seeks to deeply integrate AI with user-centric communication networks, with the goal of developing AI-native networks that more accurately address user requirements. The rapid development of LLMs offers significant potential in realizing these goals. However, existing efforts that leverage LLMs for wireless communication often overlook the considerable gap between human natural language and the intricacies of real-world communication systems, thus failing to fully exploit the capabilities of LLMs. To address this gap, we propose a novel LLM-driven paradigm for wireless communication that innovatively incorporates the nature language to structured query language (NL2SQL) tool. Specifically, in this paradigm, user personal requirements is the primary focus. Upon receiving a user request, LLMs first analyze the user intent in terms of relevant communication metrics and system parameters. Subsequently, a structured query language (SQL) statement is generated to retrieve the specific parameter values from a high-performance real-time database. We further utilize LLMs to formulate and solve an optimization problem based on the user request and the retrieved parameters. The solution to this optimization problem then drives adjustments in the communication system to fulfill the user's requirements. To validate the feasibility of the proposed paradigm, we present a prototype system. In this prototype, we consider user-request centric semantic communication (URC-SC) system in which a dynamic semantic representation network at the physical layer adapts its encoding depth to meet user requirements. Additionally, two LLMs are employed to analyze user requests and generate SQL statements, respectively. Simulation results demonstrate the effectiveness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube