Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Power-scaled Bayesian Inference with Score-based Generative Models (2504.10807v2)

Published 15 Apr 2025 in cs.LG, cs.CV, and physics.geo-ph

Abstract: We propose a score-based generative algorithm for sampling from power-scaled priors and likelihoods within the Bayesian inference framework. Our algorithm enables flexible control over prior-likelihood influence without requiring retraining for different power-scaling configurations. Specifically, we focus on synthesizing seismic velocity models conditioned on imaged seismic. Our method enables sensitivity analysis by sampling from intermediate power posteriors, allowing us to assess the relative influence of the prior and likelihood on samples of the posterior distribution. Through a comprehensive set of experiments, we evaluate the effects of varying the power parameter in different settings: applying it solely to the prior, to the likelihood of a Bayesian formulation, and to both simultaneously. The results show that increasing the power of the likelihood up to a certain threshold improves the fidelity of posterior samples to the conditioning data (e.g., seismic images), while decreasing the prior power promotes greater structural diversity among samples. Moreover, we find that moderate scaling of the likelihood leads to a reduced shot data residual, confirming its utility in posterior refinement.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.