Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Particle Hamiltonian Monte Carlo (2504.09875v1)

Published 14 Apr 2025 in stat.CO

Abstract: In Bayesian inference, Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo (MCMC) algorithm known for its efficiency in sampling from complex probability distributions. However, its application to models with latent variables, such as state-space models, poses significant challenges. These challenges arise from the need to compute gradients of the log-posterior of the latent variables, and the likelihood may be intractable due to the complexity of the underlying model. In this paper, we propose Particle Hamiltonian Monte Carlo (PHMC), an algorithm specifically designed for state-space models. PHMC leverages Sequential Monte Carlo (SMC) methods to estimate the marginal likelihood, infer latent variables (as in particle Metropolis-Hastings), and compute gradients of the log-posterior of model parameters. Importantly, PHMC avoids the need to calculate gradients of the log-posterior for latent variables, which addresses a major limitation of traditional HMC approaches. We assess the performance of Particle HMC on both simulated datasets and a real-world dataset involving crowdsourced cycling activities data. The results demonstrate that Particle HMC outperforms particle marginal Metropolis-Hastings with a Gaussian random walk, particularly in scenarios involving a large number of parameters.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.