Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Beyond Memorization: Mapping the Originality-Quality Frontier of Language Models (2504.09389v1)

Published 13 Apr 2025 in cs.CL

Abstract: As LLMs are increasingly used for ideation and scientific discovery, it is important to evaluate their ability to generate novel output. Prior work evaluates novelty as the originality with respect to training data, but original outputs can be low quality. In contrast, non-expert judges may favor high-quality but memorized outputs, limiting the reliability of human preference as a metric. We propose a new novelty metric for LLM generations that balances originality and quality -- the harmonic mean of the fraction of \ngrams unseen during training and a task-specific quality score. We evaluate the novelty of generations from two families of open-data models (OLMo and Pythia) on three creative tasks: story completion, poetry writing, and creative tool use. We find that LLM generated text is less novel than human written text. To elicit more novel outputs, we experiment with various inference-time methods, which reveals a trade-off between originality and quality. While these methods can boost novelty, they do so by increasing originality at the expense of quality. In contrast, increasing model size or applying post-training reliably shifts the Pareto frontier, highlighting that starting with a stronger base model is a more effective way to improve novelty.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube