Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Identifying Protein Co-regulatory Network Logic by Solving B-SAT Problems through Gate-based Quantum Computing (2504.09365v1)

Published 12 Apr 2025 in quant-ph and q-bio.MN

Abstract: There is growing awareness that the success of pharmacologic interventions on living organisms is significantly impacted by context and timing of exposure. In turn, this complexity has led to an increased focus on regulatory network dynamics in biology and our ability to represent them in a high-fidelity way, in silico. Logic network models show great promise here and their parameter estimation can be formulated as a constraint satisfaction problem (CSP) that is well-suited to the often sparse, incomplete data in biology. Unfortunately, even in the case of Boolean logic, the combinatorial complexity of these problems grows rapidly, challenging the creation of models at physiologically-relevant scales. That said, quantum computing, while still nascent, facilitates novel information-processing paradigms with the potential for transformative impact in problems such as this one. In this work, we take a first step at actualizing this potential by identifying the structure and Boolean decisional logic of a well-studied network linking 5 proteins involved in the neural development of the mammalian cortical area of the brain. We identify the protein-protein connectivity and binary decisional logic governing this network by formulating it as a Boolean Satisfiability (B-SAT) problem. We employ Grover's algorithm to solve the NP-hard problem faster than the exponential time complexity required by deterministic classical algorithms. Using approaches deployed on both quantum simulators and actual noisy intermediate scale quantum (NISQ) hardware, we accurately recover several high-likelihood models from very sparse protein expression data. The results highlight the differential roles of data types in supporting accurate models; the impact of quantum algorithm design as it pertains to the mutability of quantum hardware; and the opportunities for accelerated discovery enabled by this approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube