Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KG-LLM-Bench: A Scalable Benchmark for Evaluating LLM Reasoning on Textualized Knowledge Graphs (2504.07087v1)

Published 9 Apr 2025 in cs.CL, cs.AI, and cs.IR

Abstract: Knowledge graphs have emerged as a popular method for injecting up-to-date, factual knowledge into LLMs. This is typically achieved by converting the knowledge graph into text that the LLM can process in context. While multiple methods of encoding knowledge graphs have been proposed, the impact of this textualization process on LLM performance remains under-explored. We introduce KG-LLM-Bench, a comprehensive and extensible benchmark spanning five knowledge graph understanding tasks, and evaluate how different encoding strategies affect performance across various base models. Our extensive experiments with seven LLMs and five textualization strategies provide insights for optimizing LLM performance on KG reasoning tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com