On the minimisation of the Peak-to-average ratio (2504.03972v1)
Abstract: Let $\Omega \Subset \mathbb Rn$ and a continuous function $\mathrm H$ be given, where $n,k,N \in \mathbb N$. For $p\in [1,\infty]$, we consider the functional [ \mathrm E_p(u) := \big| \mathrm H \big(\cdot,u,\mathrm D u, \ldots, \mathrm Dku \big) \big|{\mathrm Lp(\Omega)},\ \ \ u\in \mathrm W{k,p}(\Omega;\mathbb RN). ] We are interested in the $L\infty$ variational problem [ \mathrm C{\infty,p}(u_\infty)\, =\, \inf \Big{\mathrm C_{\infty,p}(u) \ : \ u\in \mathrm W{k,\infty}_\varphi(\Omega;\mathbb RN), \ \mathrm E_1(u)\neq 0 \Big}, ] where $\varphi\in \mathrm W{k,\infty}(\Omega;\mathbb RN)$, $p$ is fixed, and [ \mathrm C_{\infty,p}(u)\, := \, \frac{\mathrm E_\infty(u)}{\mathrm E_p(u)} . ] The variational problem is ill-posed. $\mathrm C_{\infty,2}$ is known as the Crest factor" and arises as the
peak--to--average ratio" problem in various applications, including eg. nuclear reactors and signal processing in sound engineering. We solve it by characterising the set of minimisers as the set of strong solutions to the eigenvalue Dirichlet problem for the fully nonlinear PDE [ \left{ \ \ \begin{array}{ll} \big| \mathrm H \big(\cdot,u,\mathrm D u, \ldots, \mathrm Dku \big) \big|= \Lambda, & \text{ a.e.\ in }\Omega, \ u = \varphi, & \text{ on }\partial \Omega,\ \mathrm D u = \mathrm D \varphi, & \text{ on }\partial\Omega, \vdots & \vdots \ \mathrm D{k-1}u = \mathrm D{k-1}\varphi, & \text{ on }\partial\Omega. \end{array} \right. ] Under appropriate assumptions for $\mathrm H$, we show existence of infinitely-many solutions $(u,\Lambda) \in \mathrm W{k,\infty}_\varphi(\Omega;\mathbb RN) \times [\Lambda_,\infty)$ for $\Lambda_\geq0$, by utilising the Baire Category method for implicit PDEs. In the case of $k=1$ and $n=N$, these assumptions do not require quasiconvexity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.