Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion (2504.02842v1)

Published 19 Mar 2025 in eess.SP, cs.LG, stat.AP, and stat.ME

Abstract: AI computation in healthcare faces significant challenges when clinical datasets are limited and heterogeneous. Integrating datasets from multiple sources and different equipments is critical for effective AI computation but is complicated by their diversity, complexity, and lack of representativeness, so we often need to join multiple datasets for analysis. The currently used method is fusion after normalization. But when using this method, it can introduce redundant information, decreasing the signal-to-noise ratio and reducing classification accuracy. To tackle this issue, we propose a feature-based fusion algorithm utilizing Kernel Density Estimation (KDE) and Kullback-Leibler (KL) divergence. Our approach involves initially preprocessing and continuous estimation on the extracted features, followed by employing the gradient descent method to identify the optimal linear parameters that minimize the KL divergence between the feature distributions. Using our in-house datasets consisting of ECG signals collected from 2000 healthy and 2000 diseased individuals by different equipments and verifying our method by using the publicly available PTB-XL dataset which contains 21,837 ECG recordings from 18,885 patients. We employ a Light Gradient Boosting Machine (LGBM) model to do the binary classification. The results demonstrate that the proposed fusion method significantly enhances feature-based classification accuracy for abnormal ECG cases in the merged datasets, compared to the normalization method. This data fusion strategy provides a new approach to process heterogeneous datasets for the optimal AI computation results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.