Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lower Bounds for Leader Election and Collective Coin Flipping, Revisited (2504.01856v1)

Published 2 Apr 2025 in cs.CC, cs.CR, and cs.DC

Abstract: We study the tasks of collective coin flipping and leader election in the full-information model. We prove new lower bounds for coin flipping protocols, implying lower bounds for leader election protocols. We show that any $k$-round coin flipping protocol, where each of $\ell$ players sends 1 bit per round, can be biased by $O(\ell/\log{(k)}(\ell))$ bad players. For all $k>1$ this strengthens previous lower bounds [RSZ, SICOMP 2002], which ruled out protocols resilient to adversaries controlling $O(\ell/\log{(2k-1)}(\ell))$ players. Consequently, we establish that any protocol tolerating a linear fraction of corrupt players, with only 1 bit per round, must run for at least $\log*\ell-O(1)$ rounds, improving on the prior best lower bound of $\frac12 \log\ell-\log^\log*\ell$. This lower bound matches the number of rounds, $\log*\ell$, taken by the current best coin flipping protocols from [RZ, JCSS 2001], [F, FOCS 1999] that can handle a linear sized coalition of bad players, but with players sending unlimited bits per round. We also derive lower bounds for protocols allowing multi-bit messages per round. Our results show that the protocols from [RZ, JCSS 2001], [F, FOCS 1999] that handle a linear number of corrupt players are almost optimal in terms of round complexity and communication per player in a round. A key technical ingredient in proving our lower bounds is a new result regarding biasing most functions from a family of functions using a common set of bad players and a small specialized set of bad players specific to each function that is biased. We give improved constant-round coin flipping protocols in the setting that each player can send 1 bit per round. For two rounds, our protocol can handle $O(\ell/(\log\ell)(\log\log\ell)2)$ sized coalition of bad players; better than the best one-round protocol by [AL, Combinatorica 1993] in this setting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.