Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

LeForecast: Enterprise Hybrid Forecast by Time Series Intelligence (2503.22747v1)

Published 27 Mar 2025 in cs.LG, cs.AI, and cs.ET

Abstract: Demand is spiking in industrial fields for multidisciplinary forecasting, where a broad spectrum of sectors needs planning and forecasts to streamline intelligent business management, such as demand forecasting, product planning, inventory optimization, etc. Specifically, these tasks expecting intelligent approaches to learn from sequentially collected historical data and then foresee most possible trend, i.e. time series forecasting. Challenge of it lies in interpreting complex business contexts and the efficiency and generalisation of modelling. With aspirations of pre-trained foundational models for such purpose, given their remarkable success of large foundation model across legions of tasks, we disseminate \leforecast{}, an enterprise intelligence platform tailored for time series tasks. It integrates advanced interpretations of time series data and multi-source information, and a three-pillar modelling engine combining a large foundation model (Le-TSFM), multimodal model and hybrid model to derive insights, predict or infer futures, and then drive optimisation across multiple sectors in enterprise operations. The framework is composed by a model pool, model profiling module, and two different fusion approaches regarding original model architectures. Experimental results verify the efficiency of our trail fusion concepts: router-based fusion network and coordination of large and small models, resulting in high costs for redundant development and maintenance of models. This work reviews deployment of LeForecast and its performance in three industrial use cases. Our comprehensive experiments indicate that LeForecast is a profound and practical platform for efficient and competitive performance. And we do hope that this work can enlighten the research and grounding of time series techniques in accelerating enterprise.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.