Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Graph-Based Uncertainty-Aware Self-Training with Stochastic Node Labeling (2503.22745v1)

Published 26 Mar 2025 in cs.LG and stat.ML

Abstract: Self-training has become a popular semi-supervised learning technique for leveraging unlabeled data. However, the over-confidence of pseudo-labels remains a key challenge. In this paper, we propose a novel \emph{graph-based uncertainty-aware self-training} (GUST) framework to combat over-confidence in node classification. Drawing inspiration from the uncertainty integration idea introduced by Wang \emph{et al.}~\cite{wang2024uncertainty}, our method largely diverges from previous self-training approaches by focusing on \emph{stochastic node labeling} grounded in the graph topology. Specifically, we deploy a Bayesian-inspired module to estimate node-level uncertainty, incorporate these estimates into the pseudo-label generation process via an expectation-maximization (EM)-like step, and iteratively update both node embeddings and adjacency-based transformations. Experimental results on several benchmark graph datasets demonstrate that our GUST framework achieves state-of-the-art performance, especially in settings where labeled data is extremely sparse.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets