Differential equation quantum solvers: engineering measurements to reduce cost (2503.22656v1)
Abstract: Quantum computers have been proposed as a solution for efficiently solving non-linear differential equations (DEs), a fundamental task across diverse technological and scientific domains. However, a crucial milestone in this regard is to design protocols that are hardware-aware, making efficient use of limited available quantum resources. We focus here on promising variational methods derived from scientific machine learning: differentiable quantum circuits (DQC), addressing specifically their cost in number of circuit evaluations. Reducing the number of quantum circuit evaluations is particularly valuable in hybrid quantum/classical protocols, where the time required to interface and run quantum hardware at each cycle can impact the total wall-time much more than relatively inexpensive classical post-processing overhead. Here, we propose and test two sample-efficient protocols for solving non-linear DEs, achieving exponential savings in quantum circuit evaluations. These protocols are based on redesigning the extraction of information from DQC in a ``measure-first" approach, by introducing engineered cost operators similar to the randomized-measurement toolbox (i.e. classical shadows). In benchmark simulations on one and two-dimensional DEs, we report up to $\sim$ 100 fold reductions in circuit evaluations. Our protocols thus hold the promise to unlock larger and more challenging non-linear differential equation demonstrations with existing quantum hardware.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.