Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neural Identification of Feedback-Stabilized Nonlinear Systems (2503.22601v1)

Published 28 Mar 2025 in eess.SY and cs.SY

Abstract: Neural networks have demonstrated remarkable success in modeling nonlinear dynamical systems. However, identifying these systems from closed-loop experimental data remains a challenge due to the correlations induced by the feedback loop. Traditional nonlinear closed-loop system identification methods struggle with reliance on precise noise models, robustness to data variations, or computational feasibility. Additionally, it is essential to ensure that the identified model is stabilized by the same controller used during data collection, ensuring alignment with the true system's closed-loop behavior. The dual Youla parameterization provides a promising solution for linear systems, offering statistical guarantees and closed-loop stability. However, extending this approach to nonlinear systems presents additional complexities. In this work, we propose a computationally tractable framework for identifying complex, potentially unstable systems while ensuring closed-loop stability using a complete parameterization of systems stabilized by a given controller. We establish asymptotic consistency in the linear case and validate our method through numerical comparisons, demonstrating superior accuracy over direct identification baselines and compatibility with the true system in stability properties.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.