Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Data-driven Distributionally Robust Control Based on Sinkhorn Ambiguity Sets (2503.20703v1)

Published 26 Mar 2025 in eess.SY and cs.SY

Abstract: As the complexity of modern control systems increases, it becomes challenging to derive an accurate model of the uncertainty that affects their dynamics. Wasserstein Distributionally Robust Optimization (DRO) provides a powerful framework for decision-making under distributional uncertainty only using noise samples. However, while the resulting policies inherit strong probabilistic guarantees when the number of samples is sufficiently high, their performance may significantly degrade when only a few data are available. Inspired by recent results from the machine learning community, we introduce an entropic regularization to penalize deviations from a given reference distribution and study data-driven DR control over Sinkhorn ambiguity sets. We show that for finite-horizon control problems, the optimal DR linear policy can be computed via convex programming. By analyzing the relation between the ambiguity set defined in terms of Wasserstein and Sinkhorn discrepancies, we reveal that, as the regularization parameter increases, this optimal policy interpolates between the solution of the Wasserstein DR problem and that of the stochastic problem under the reference distribution. We validate our theoretical findings and the effectiveness of our approach when only scarce data are available on a numerical example.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube