Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Two-Player Dynamic Potential LQ Games with Sequentially Revealed Costs (2503.20234v1)

Published 26 Mar 2025 in math.OC, cs.SY, and eess.SY

Abstract: We investigate a novel finite-horizon linear-quadratic (LQ) feedback dynamic potential game with a priori unknown cost matrices played between two players. The cost matrices are revealed to the players sequentially, with the potential for future values to be previewed over a short time window. We propose an algorithm that enables the players to predict and track a feedback Nash equilibrium trajectory, and we measure the quality of their resulting decisions by introducing the concept of \emph{price of uncertainty}. We show that under the proposed algorithm, the price of uncertainty is bounded by horizon-invariant constants. The constants are the sum of three terms; the first and second terms decay exponentially as the preview window grows, and another depends on the magnitude of the differences between the cost matrices for each player. Through simulations, we illustrate that the resulting price of uncertainty initially decays at an exponential rate as the preview window lengthens, then remains constant for large time horizons.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.