Human-Object Interaction via Automatically Designed VLM-Guided Motion Policy (2503.18349v2)
Abstract: Human-object interaction (HOI) synthesis is crucial for applications in animation, simulation, and robotics. However, existing approaches either rely on expensive motion capture data or require manual reward engineering, limiting their scalability and generalizability. In this work, we introduce the first unified physics-based HOI framework that leverages Vision-LLMs (VLMs) to enable long-horizon interactions with diverse object types, including static, dynamic, and articulated objects. We introduce VLM-Guided Relative Movement Dynamics (RMD), a fine-grained spatio-temporal bipartite representation that automatically constructs goal states and reward functions for reinforcement learning. By encoding structured relationships between human and object parts, RMD enables VLMs to generate semantically grounded, interaction-aware motion guidance without manual reward tuning. To support our methodology, we present Interplay, a novel dataset with thousands of long-horizon static and dynamic interaction plans. Extensive experiments demonstrate that our framework outperforms existing methods in synthesizing natural, human-like motions across both simple single-task and complex multi-task scenarios. For more details, please refer to our project webpage: https://vlm-rmd.github.io/.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.