Koopman-Nemytskii Operator: A Linear Representation of Nonlinear Controlled Systems (2503.18269v1)
Abstract: While Koopman operator lifts a nonlinear system into an infinite-dimensional function space and represents it as a linear dynamics, its definition is restricted to autonomous systems, i.e., does not incorporate inputs or disturbances. To the end of designing state-feedback controllers, the existing extensions of Koopman operator, which only account for the effect of open-loop values of inputs, does not involve feedback laws on closed-loop systems. Hence, in order to generically represent any nonlinear controlled dynamics linearly, this paper proposes a Koopman-Nemytskii operator, defined as a linear mapping from a product reproducing kernel Hilbert space (RKHS) of states and feedback laws to an RKHS of states. Using the equivalence between RKHS and Sobolev-Hilbert spaces under certain regularity conditions on the dynamics and kernel selection, this operator is well-defined. Its data-based approximation, which follows a kernel extended dynamic mode decomposition (kernel EDMD) approach, have established errors in single-step and multi-step state predictions as well as accumulated cost under control.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.