Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

From Density to Void: Why Brain Networks Fail to Reveal Complex Higher-Order Structures (2503.14700v1)

Published 18 Mar 2025 in q-bio.NC

Abstract: In brain network analysis using resting-state fMRI, there is growing interest in modeling higher-order interactions beyond simple pairwise connectivity via persistent homology. Despite the promise of these advanced topological tools, robust and consistently observed higher-order interactions over time remain elusive. In this study, we investigate why conventional analyses often fail to reveal complex higher-order structures - such as interactions involving four or more nodes - and explore whether such interactions truly exist in functional brain networks. We utilize a simplicial complex framework often used in persistent homology to address this question.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube