Foundation Models for Spatio-Temporal Data Science: A Tutorial and Survey (2503.13502v1)
Abstract: Spatio-Temporal (ST) data science, which includes sensing, managing, and mining large-scale data across space and time, is fundamental to understanding complex systems in domains such as urban computing, climate science, and intelligent transportation. Traditional deep learning approaches have significantly advanced this field, particularly in the stage of ST data mining. However, these models remain task-specific and often require extensive labeled data. Inspired by the success of Foundation Models (FM), especially LLMs, researchers have begun exploring the concept of Spatio-Temporal Foundation Models (STFMs) to enhance adaptability and generalization across diverse ST tasks. Unlike prior architectures, STFMs empower the entire workflow of ST data science, ranging from data sensing, management, to mining, thereby offering a more holistic and scalable approach. Despite rapid progress, a systematic study of STFMs for ST data science remains lacking. This survey aims to provide a comprehensive review of STFMs, categorizing existing methodologies and identifying key research directions to advance ST general intelligence.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.