Faithfulness of LLM Self-Explanations for Commonsense Tasks: Larger Is Better, and Instruction-Tuning Allows Trade-Offs but Not Pareto Dominance (2503.13445v1)
Abstract: As LLMs become increasingly capable, ensuring that their self-generated explanations are faithful to their internal decision-making process is critical for safety and oversight. In this work, we conduct a comprehensive counterfactual faithfulness analysis across 62 models from 8 families, encompassing both pretrained and instruction-tuned variants and significantly extending prior studies of counterfactual tests. We introduce phi-CCT, a simplified variant of the Correlational Counterfactual Test, which avoids the need for token probabilities while explaining most of the variance of the original test. Our findings reveal clear scaling trends: larger models are consistently more faithful on our metrics. However, when comparing instruction-tuned and human-imitated explanations, we find that observed differences in faithfulness can often be attributed to explanation verbosity, leading to shifts along the true-positive/false-positive Pareto frontier. While instruction-tuning and prompting can influence this trade-off, we find limited evidence that they fundamentally expand the frontier of explanatory faithfulness beyond what is achievable with pretrained models of comparable size. Our analysis highlights the nuanced relationship between instruction-tuning, verbosity, and the faithful representation of model decision processes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.