Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deciphering the Scattering of Mechanically Driven Polymers using Deep Learning (2503.08913v1)

Published 11 Mar 2025 in cond-mat.soft and cond-mat.mtrl-sci

Abstract: We present a deep learning approach for analyzing two-dimensional scattering data of semiflexible polymers under external forces. In our framework, scattering functions are compressed into a three-dimensional latent space using a Variational Autoencoder (VAE), and two converter networks establish a bidirectional mapping between the polymer parameters (bending modulus, stretching force, and steady shear) and the scattering functions. The training data are generated using off-lattice Monte Carlo simulations to avoid the orientational bias inherent in lattice models, ensuring robust sampling of polymer conformations. The feasibility of this bidirectional mapping is demonstrated by the organized distribution of polymer parameters in the latent space. By integrating the converter networks with the VAE, we obtain a generator that produces scattering functions from given polymer parameters and an inferrer that directly extracts polymer parameters from scattering data. While the generator can be utilized in a traditional least-squares fitting procedure, the inferrer produces comparable results in a single pass and operates three orders of magnitude faster. This approach offers a scalable, automated tool for polymer scattering analysis and provides a promising foundation for extending the method to other scattering models, experimental validation, and the study of time-dependent scattering data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.