Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Delocalization of Two-Dimensional Random Band Matrices (2503.07606v1)

Published 10 Mar 2025 in math.PR, math-ph, and math.MP

Abstract: We study a random band matrix $H=(H_{xy}){x,y}$ of dimension $N\times N$ with mean-zero complex Gaussian entries, where $x,y$ belong to the discrete torus $(\mathbb{Z}/\sqrt{N}\mathbb{Z}){2}$. The variance profile $\mathbb{E}|H{xy}|{2}=S_{xy}$ vanishes when the distance between $x,y$ is larger than some band-width parameter $W$ depending on $N$. We show that if the band-width satisfies $W\geq N{\mathfrak{c}}$ for some $\mathfrak{c}>0$, then in the large-$N$ limit, we have the following results. The first result is a local semicircle law in the bulk down to scales $N{-1+\varepsilon}$. The second is delocalization of bulk eigenvectors. The third is a quantum unique ergodicity for bulk eigenvectors. The fourth is universality of local bulk eigenvalue statistics. The fifth is a quantum diffusion profile for the associated $T$ matrix. Our method is based on embedding $H$ inside a matrix Brownian motion $H_{t}$ as done in [Dubova-Yang '24] and [Yau-Yin '25] for band matrices on the one-dimensional torus. In this paper, the key additional ingredient in our analysis of $H_{t}$ is a new CLT-type estimate for polynomials in the entries of the resolvent of $H_{t}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.