Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SemHiTok: A Unified Image Tokenizer via Semantic-Guided Hierarchical Codebook for Multimodal Understanding and Generation (2503.06764v4)

Published 9 Mar 2025 in cs.CV and cs.AI

Abstract: In this paper, we introduce SemHiTok, a unified image Tokenizer via Semantic-Guided Hierarchical codebook that provides consistent discrete representations for multimodal understanding and generation. Recently, unified image tokenizers have sparked exploration within research community, which is designed to capture high-level semantic features for understanding and retaining low-level pixel features for generation. Previous works attempt to train a unified image tokenizer by combining loss for semantic distillation and pixel reconstruction. However, due to the differing levels of features prioritized by multimodal understanding and generation, joint training methods face significant challenges in achieving a good trade-off. SemHiTok addresses this challenge through a novel semantic-guided hierarchical codebook, which builds pixel sub-codebooks on a pretrained semantic codebook. This design decouples semantic and pixel both in terms of structure and training strategy, enabling the tokenizer to capture pixel features while retaining its ability to comprehend high-level semantic information. Our experiments demonstrate that SemHiTok achieves SOTA performance in image reconstruction and multimodal understanding under LLaVA-v1.5 setting. Further, we develop a unified MLLM with SemHiTok, which exhibits superior performance across multimodal understanding and generation tasks. For understanding, SemHiTok achieves impressive performance on most benchmarks. For generation, our model achieves SOTA performance on MJHQ30K in unified MLLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube