Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Leveraging Approximate Caching for Faster Retrieval-Augmented Generation (2503.05530v1)

Published 7 Mar 2025 in cs.DB, cs.LG, and cs.PF

Abstract: Retrieval-augmented generation (RAG) enhances the reliability of LLM answers by integrating external knowledge. However, RAG increases the end-to-end inference time since looking for relevant documents from large vector databases is computationally expensive. To address this, we introduce Proximity, an approximate key-value cache that optimizes the RAG workflow by leveraging similarities in user queries. Instead of treating each query independently, Proximity reuses previously retrieved documents when similar queries appear, reducing reliance on expensive vector database lookups. We evaluate Proximity on the MMLU and MedRAG benchmarks, demonstrating that it significantly improves retrieval efficiency while maintaining response accuracy. Proximity reduces retrieval latency by up to 59% while maintaining accuracy and lowers the computational burden on the vector database. We also experiment with different similarity thresholds and quantify the trade-off between speed and recall. Our work shows that approximate caching is a viable and effective strategy for optimizing RAG-based systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.