Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Benchmarking LLMs and LLM-based Agents in Practical Vulnerability Detection for Code Repositories (2503.03586v2)

Published 5 Mar 2025 in cs.CR

Abstract: LLMs have shown promise in software vulnerability detection, particularly on function-level benchmarks like Devign and BigVul. However, real-world detection requires interprocedural analysis, as vulnerabilities often emerge through multi-hop function calls rather than isolated functions. While repository-level benchmarks like ReposVul and VulEval introduce interprocedural context, they remain computationally expensive, lack pairwise evaluation of vulnerability fixes, and explore limited context retrieval, limiting their practicality. We introduce JitVul, a JIT vulnerability detection benchmark linking each function to its vulnerability-introducing and fixing commits. Built from 879 CVEs spanning 91 vulnerability types, JitVul enables comprehensive evaluation of detection capabilities. Our results show that ReAct Agents, leveraging thought-action-observation and interprocedural context, perform better than LLMs in distinguishing vulnerable from benign code. While prompting strategies like Chain-of-Thought help LLMs, ReAct Agents require further refinement. Both methods show inconsistencies, either misidentifying vulnerabilities or over-analyzing security guards, indicating significant room for improvement.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com