Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Quantum-Inspired Privacy-Preserving Federated Learning Framework for Secure Dementia Classification (2503.03267v1)

Published 5 Mar 2025 in cs.CR and cs.DC

Abstract: Dementia, a neurological disorder impacting millions globally, presents significant challenges in diagnosis and patient care. With the rise of privacy concerns and security threats in healthcare, federated learning (FL) has emerged as a promising approach to enable collaborative model training across decentralized datasets without exposing sensitive patient information. However, FL remains vulnerable to advanced security breaches such as gradient inversion and eavesdropping attacks. This paper introduces a novel framework that integrates federated learning with quantum-inspired encryption techniques for dementia classification, emphasizing privacy preservation and security. Leveraging quantum key distribution (QKD), the framework ensures secure transmission of model weights, protecting against unauthorized access and interception during training. The methodology utilizes a convolutional neural network (CNN) for dementia classification, with federated training conducted across distributed healthcare nodes, incorporating QKD-encrypted weight sharing to secure the aggregation process. Experimental evaluations conducted on MRI data from the OASIS dataset demonstrate that the proposed framework achieves identical accuracy levels to a baseline model while enhancing data security and reducing loss by almost 1% compared to the classical baseline model. The framework offers significant implications for democratizing access to AI-driven dementia diagnostics in low- and middle-income countries, addressing critical resource and privacy constraints. This work contributes a robust, scalable, and secure federated learning solution for healthcare applications, paving the way for broader adoption of quantum-inspired techniques in AI-driven medical research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube