Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardness of computation of quantum invariants on 3-manifolds with restricted topology (2503.02814v3)

Published 4 Mar 2025 in math.GT and cs.CG

Abstract: Quantum invariants in low dimensional topology offer a wide variety of valuable invariants of knots and 3-manifolds, presented by explicit formulas that are readily computable. Their computational complexity has been actively studied and is tightly connected to topological quantum computing. In this article, we prove that for any 3-manifold quantum invariant in the Reshetikhin-Turaev model, there is a deterministic polynomial time algorithm that, given as input an arbitrary closed 3-manifold $M$, outputs a closed 3-manifold $M'$ with same quantum invariant, such that $M'$ is hyperbolic, contains no low genus embedded incompressible surface, and is presented by a strongly irreducible Heegaard diagram. Our construction relies on properties of Heegaard splittings and the Hempel distance. At the level of computational complexity, this proves that the hardness of computing a given quantum invariant of 3-manifolds is preserved even when severely restricting the topology and the combinatorics of the input. This positively answers a question raised by Samperton.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com